Applications of NMR Spectroscopy in the solid state

Applications of NMR Spectroscopy in the solid state

  • Author: Sánchez-Muñoz, Luis ; Garrido, Leoncio; Muñoz, Francisco; Sanz, Jesús (eds.)
  • Publisher: CSIC
  • Serie: Biblioteca de Ciencias
  • ISBN: 9788400105143
  • eISBN Pdf: 9788400105150
  • Place of publication:  Madrid , Spain
  • Year of publication: 2019
  • Pages: 502

This book provides a particular approach to the application of NMR spectroscopy for the characterization of structural and behavioral aspects of solids with the aim of resolving details at the local scale. The book is divided in four parts. The first part is dedicated to a basic and general theoretical background on the technique. The next section consist of five chapters on the contribution of NMR in the study of crystalline and non-crystalline solids, including minerals, ceramics, cements, glasses and glass-ceramics, in order to explore the local structure in that variety of natural and synthetic materials. The third part deals with materials and compounds of interest in catalysis, energy production, transformation, storage and related applications. Finally, the fourth section focuses on the characterization of active pharmaceutical ingredients, polymers and solid proteins. Aimed at dissemination of solid state NMR, this volume is an essential reading for researchers and students of solid-state science, but also a very useful instrument for academic teaching.

  • Cover
  • Title page
  • Copyright page
  • Index
  • Academic Profiles
  • Preface
  • Abreviations, acronyms and symbols
  • Chapter 1. Nuclear magnetic resonance spectroscopy
    • Abstract
    • 1. Introduction
    • 2. NMR detection
    • 3. Spin interactions
      • 3.1. Chemical shift
      • 3.2. Dipolar coupling
      • 3.3. Paramagnetic Interactions
      • 3.4. Quadrupolar coupling
    • 4. High resolution techniques
      • 4.1. Technique MAS
      • 4.2. Decoupling techniques
      • 4.3. Cyclic pulse sequences
      • 4.4. Recoupling techniques
    • 5. Two-dimensional techniques
      • 5.1. Anisotropic patterns
      • 5.2. Chemical shift correlations
    • 6. Materials study
      • 6.1. Substitutional disorder
      • 6.2. Ion and Molecular mobility
    • 7. Conclusions
    • Acknowledgements
    • References
  • Chapter 2. Structural modeling of solids combining DFT and NMR studies
    • Abstract
    • 1. Introduction
    • 2. Methodology and strategies
      • 2.1. DFT calculation of NMR parameters
    • 3. Structural models (input)
    • 4. Results of calculations (output)
    • 5. Comparing calculations with experimental results
    • 6. Dynamics
    • 7. Applications
      • 7.1. Improvement/selection of structural models
      • 7.2. Assignment of NMR resonances
      • 7.3. Disorder
      • 7.4. Dynamics
    • 8. Conclusions
    • Acknowledgments
    • References
  • Chapter 3. Medium-range order in crystal structures of minerals by NMR
    • Abstract
    • 1. Crystals and minerals
    • 2. Dynamic structures In SiO2
    • 3. Medium-range order in k-feldspars KAlSi3O8
    • 4. Solid solution and protons in Beryl
    • 5. Conclusions
    • Acknowledgements
    • References
  • Chapter 4. Raw Materials for ceramics
    • Abstract
    • 1. Introduction
    • 2. Silica polymorphs
      • 2.1. 29Si NMR spectroscopy
      • 2.2. Silica Classification
      • 2.3. Characterization of different types of silicas by NMR spectroscopy
    • 3. Aluminum oxides
      • 3.1. 27Al MAS NMR spectroscopy
      • 3.2. Transitional aluminas
      • 3.3. Characterization of aluminas by NMR spectroscopy
    • 4. Clay minerals
      • 4.1. Structure
      • 4.2. Classification
      • 4.3. Structural Characterization of 1:1 and 2:1 phyllosilicates
      • 4.4. Clay chemistry. Adsorption Phenomena
      • 4.5. Reactivity of Clay Minerals
    • 5. Conclusions
    • References
  • Chapter 5. Structural studies of radionuclides
    • Abstract
    • 1. Introduction
    • 2. Vitrification
      • 2.1. Structural changes in glasses due to HLW waste
      • 2.2. Glass leaching
      • 2.3. Challenges
    • 3. Efficiency of the engineering barrier
      • 3.1. Chemical analogous of HLW in oxidation state +3
      • 3.2. Chemical analogous of HLW in oxidation state +4
    • 4. Conclusions
    • Acknowledgements
    • References
  • Chapter 6. Cementitious materials
    • Abstract
    • 1. Introduction
    • 2.Al spectra
      • 2.1. Calcium Monoaluminate (CA) and Calcium Aluminate Cement (CAC)
      • 2.2. Tricalcium Aluminate (C3A) and Ordinary Portland Cement (OPC)
      • 2.3. Calcium sulfoaluminate (C4A3s)
    • 3.Si spectra
      • 3.1. Calcium silicates: C3S, C2S and portland and belite cements
      • 3.2. Octahedral silice coordination: Thaumasite
    • 4. C–S–H, C–A–S–H and N–A–S–H (cementitious gel) structure
      • 4.1. C–S–H gel structure
      • 4.2. The role of Al in the C–S–H gel structure: C–A–S–H gel
      • 4.3. N–A–S–H gels: Ca-low alkaline cements
      • 4.4. Cementitious gel compatibility: hybrid alkaline cements
    • 5. Conclusions
    • Acknowledgements
    • References
  • Chapter 7. Glasses and glass-ceramics
    • Abstract
    • 1. Introduction
      • 1.1. The glassy state and theories of glass structure
      • 1.2. NMR active nuclei in glasses
    • 2. Silicates and glass-ceramics
      • 2.1. 29Si NMR
      • 2.2. Glass-Ceramics NMR
    • 3. Borates and borosilicates
      • 3.1. 11B NMR
    • 4. Phosphates
      • 4.1. 31P NMR
    • 5.Intermediate and modifier elements: Al, Li, Na, Ca
      • 5.1.Al NMR
      • 5.2.Ga NMR
      • 5.3.Li NMR
      • 5.4. Other Nuclei
    • 6. Anions in glasses
      • 6.1.O NMR
      • 6.2. F NMR
      • 6.3.N NMR
    • 7. Conclusions
    • Acknowledgements
    • References
  • Chapter 8. Solid state NMR spectroscopy applied to the structural characterization of zeolites
    • Abstract
    • 1. Introduction
    • 2.Si NMR of zeolites
      • 2.1.Si NMR of aluminum rich zeolites
      • 2.2.Si NMR of pure or high silica zeolites. NMR Crystallography
      • 2.3. Five-coordinate silicon and 19F MAS NMR
    • 3.Al NMR of zeolites
      • 3.1. NMR Invisible aluminum
      • 3.2. Extra-framework aluminum (EFAL)
      • 3.3. Siting and distribution of aluminum atoms in zeolite framework
    • 4. 1H NMR in zeolites
    • 5. Conclusions and perspectives
    • References
  • Chapter 9. Adsorption and heterogeneous catalytic processes studied by in situ NMR
    • Abstract
    • 1. Introduction
      • 1.1. Adsorption and heterogeneous catalysis in industry
      • 1.2. NMR vs other spectroscopies in adsorbate-adsorbent systems
      • 1.3. Magnetic interactions in the “adsorbed” state of matter
    • 2. Experimental devices for in situ NMR
      • 2.1. Devices under batch conditions
      • 2.2. Devices under continuous flow
      • 2.3. Comparison between the different devices
    • 3. Adsorbents and adsorption processes studied by NMR
      • 3.1. Characterization of solids by NMR of adsorbed probe molecules
      • 3.2. Pore accessibility by 129Xe NMR
      • 3.3. Adsorption processes
    • 4. Catalytic processes studied by NMR
      • 4.1. In situ/operando NMR study of catalytic reactions: the case of MTO
      • 4.2. Beckmann rearrangement mechanism by 15N MAS NMR
      • 4.3. In situ electrochemical NMR studies
    • 5. Overcoming NMR limitations
      • 5.1. Low 13C sensitivity as an advantage to elucidate reaction mechanisms
      • 5.2. Paramagnetic probe molecules to study the accessibility to adsorbents
      • 5.3. Long time scale to directly measure the average zeolite basicity
      • 5.4. Chemical shift anisotropy interaction to localize adsorbates
    • 6. Conclusions and perspectives
    • Acknowledgements
    • References
  • Chapter 10. NMR spectroscopy of solid ion conductors
    • Abstract
    • 1. Introduction
    • 2. Fast ion conductors
    • 3. NMR background
    • 4. Inorganic electrolytes
      • 4.1. Lanthanum titanates
      • 4.2. NASICON compounds
    • 5. Cation mobility
      • 5.1. Exchange processes
      • 5.2. NMR relaxation
      • 5.3. Diffusion coefficients
      • 5.4. Two-dimensional NMR techniques
      • 5.5. NMR vs Impedance spectroscopy
      • 5.6. DFT simulation and Molecular Dynamics
    • 6. Grain-boundary effects
      • 6.1. H/Li exchange
      • 6.2. Phases segregation
    • 7. Polymer electrolytes
      • 7.1. PEO-based polymer electrolytes
      • 7.2. Grafted nanoparticles
    • 8. Proton conductors
      • 8.1. Sulfonated polyestirene polymers
      • 8.2. Inorganic porous structures
    • 9. Conclusions
    • Acnowledgements
    • References
  • Chapter 11. Electrode materials
    • Abstract
    • 1. Introduction
    • 2. Paramagnetic interactions by solid-state NMR
      • 2.1. The Fermi-contact interaction
      • 2.2. The dipolar interaction
    • 3. Solid state NMR of cathode materials
      • 3.1. Na-based
      • 3.2. Li-Based electrodes
    • 4. Solid state NMR of anodes
      • 4.1. Introduction
      • 4.2. Alloys
      • 4.3. In situ solid state NMR of carbon-based anodes
      • 4.4. In situ detection of dendrites
    • 5. Conclusions
    • References
  • Chapter 12. Active pharmaceutical ingredients
    • Abstract
    • 1. Introduction
    • 2. Simplest cases, Z ’ = 1
    • 3. Splittings, Z ’ > 1
    • 4. Polymorphs
    • 5. Co-crystals
    • 6. Solvates and salts
    • 7. Interactions api-excipient and between two apis (other than co-crystals)
    • 8. Amorphous forms and dispersions
    • 9. Conclusions
    • Acknowledgments
    • References
  • Chapter 13. Polymers
    • Abstract
    • 1. Introduction
    • 2. Applications of solid state NMR in polymers
      • 2.1. High-resolution solid state NMR
      • 2.2. Heterogeneous polymer systems
    • 3. Rubbers and gels
    • 4. Molecular dynamics and transport in polymers
      • 4.1. Polymer molecular dynamics.
      • 4.2. Transport in polymers
    • 5. Outlook in solid state NMR of polymers
    • 6. Conclusions
    • Acknowledgments
    • References
  • Chapter 14. Peptides and proteins in the solid state
    • Abstract
    • 1. Introduction
    • 2. Experimental approaches
      • 2.1. Isotope Labelling Schemes
      • 2.2. Basic pulse sequences for solid state NMR
    • 3. Advanced solid state NMR techniques
      • 3.1. FROSTY/sedimentation
      • 3.2. Proton detection in solid state NMR of proteins by perdeuteration
      • 3.3. Proton-detected solid state NMR for proteins under fast MAS
    • 4. Amyloid agregates
      • 4.1. Amyloid fibrils
      • 4.2. Amyloid fibrils interacting with drug candidates for Alzheimer’s disease treatment
      • 4.3. Dynamic nuclear polarization (DNP) solid-state NMR
    • References

Subjects

    SUBSCRIBE TO OUR NEWSLETTER

    By subscribing, you accept our Privacy Policy