Geometric Functions in Computer Aided Geometric Design

Geometric Functions in Computer Aided Geometric Design

  • Author: Ruiz, Oscar; Cadavid, Carlos
  • Publisher: EAFIT
  • Serie: Académica
  • ISBN: 9789587200164
  • Place of publication:  Medellín , Colombia
  • Year of publication: 2008
  • Pages: 130

Este libro da una visión valiosa en principios para robótica, visión por computador, diseño, manufactura, cinemática y dinámica desde un punto de vista práctico. Al mismo tiempo, mantiene un contacto con las propiedades matemáticas decisivas para los objetos y transformaciones tratadas.

  • Title
  • Copyright
  • Contents
  • 1 Introduction
  • 2 Basic Concepts. Groups
    • 2.1 Functions
      • 2.1.1 Properties of Functions
      • 2.1.2 Composition of Functions
    • 2.2 Binary Operations and Groups
      • 2.2.1 Binary Operations
      • 2.2.2 Groups
    • 2.3 Square Matrices
      • 2.3.1 Matrix Invertibility
      • 2.3.2 Properties of the Inverse and Transposed Matrix
    • 2.4 The General Linear Group GL(n, R)
    • 2.5 The Positive Linear Group (GL+(n, R))
    • 2.6 The Orthogonal Group O(n)
    • 2.7 The Special Orthogonal Group SO(n)
    • 2.8 The Group (X, ∘)
    • 2.9 Transformations
      • 2.9.1 Proposed Exercise
      • 2.9.2 Linear Transformations
    • 2.10 Affine Transformations
      • 2.10.1 Affine Transformations in R2
      • 2.10.2 Proposed Exercise
    • 2.11 Summary
  • 3 Property Invariance under Geometric Transformations
    • 3.1 Introduction
    • 3.2 Property Preservation in General Transformations
      • 3.2.1 Colinearity Preservation
      • 3.2.2 Distance Preservation
      • 3.2.3 Volume Preservation
      • 3.2.4 Angle Preservation
      • 3.2.5 Orientation Preservation
      • 3.2.6 Origin Preservation
      • 3.2.7 Example. Plane Reflection
    • 3.3 Property Preservation in Affine Functions
      • 3.3.1 Discusion. Affine and Linear Transformations in 3D
    • 3.4 Example. A Linear Transformation in R2
    • 3.5 Example. Non-Linear Transformations R2 → R2
      • 3.5.1 Solution
    • 3.6 Proposed Exercise. Non-Linear Transformations R2 → R2
      • 3.6.1 Area-Preservation. Proof
      • 3.6.2 Area-Preservation. Programming
    • 3.7 Proposed Exercise. Affine Transformations R2 → R2, Aff(2, R)
    • 3.8 Solved Exercise. Non-affine Transformations R2 → R2
      • 3.8.1 Solution
    • 3.9 Homogeneous Coordinates
      • 3.9.1 Definition
      • 3.9.2 Rationale for Homogeneous Coordinates
      • 3.9.3 Transformations in Homogeneous Coordinates
      • 3.9.4 Proposed Exercises
    • 3.10 Coordinate Systems
      • 3.10.1 Definition. Coordinate Systems
      • 3.10.2 Definition. Right Handed Canonical Coordinate System in R3
      • 3.10.3 Proposed Exercise
      • 3.10.4 Solved Exercise
  • 4 Rigid Transformations in R3
    • 4.1 Definition. Rigid Transformations
    • 4.2 Pure Translations
    • 4.3 Pure Rotations
      • 4.3.1 Rotations about the Principal Axes
      • 4.3.2 Proposed Exercises
    • 4.4 Eigenvalues and eigenvectors of R ∈ SO(3)
      • 4.4.1 Eigenvalues and Eigenvector of Matrices SO(3)
      • 4.4.2 Trasformation Sequences
      • 4.4.3 Solved Exercise. Transformation Sequences
      • 4.4.4 Proposed Exercises. Rotations about Main Axis
      • 4.4.5 Rotations about Arbitrary Axis. Quaternion
    • 4.5 General Rigid Transformation Using Quaternions
    • 4.6 Solved and Proposed Exercises
      • 4.6.1 Solved Exercise. Quaternion
      • 4.6.2 Proposed Exercise. Rigid Transformations
      • 4.6.3 Proposed Exercise. Flight Simulator
  • 5 Non-Rigid Transformations and Functions
    • 5.1 Non-Rigid Affine Transformations
      • 5.1.1 Scalings
      • 5.1.2 Reflections
      • 5.1.3 Shears
    • 5.2 Pseudo-affine Geometric Functions. Parallel Projections
      • 5.2.1 Orthogonal Parallel Projections
      • 5.2.2 Non-orthogonal Parallel Projections
    • 5.3 Non-Linear Non-Invertible Functions. Perspective Projections
      • 5.3.1 Perspective of a Point
      • 5.3.2 Perspective of a Line
      • 5.3.3 Perspective and Partition of the Lines in R3
      • 5.3.4 Proposed Exercise. Perspective Projection
  • Bibliography
  • Academic Acknowledgments
  • Contracubierta

SUBSCRIBE TO OUR NEWSLETTER

By subscribing, you accept our Privacy Policy