Grasas y aceites

Grasas y aceites

  • Éditeur:
  • CSIC
  • Ejournal: Grasas y aceites
  • Lieu de publication:  Madrid , Spain
  • ISSN: 0017-3495
  • Lieu de publication:  Madrid , Spain
  • Année de publication: 2022
  • Vol: 73
  • Nº: 4
  • Pages: 96
  • e478.pdf
    • Review on preparation methods, mechanisms and applications for antioxidant peptides in oil
      • 1. INTRODUCTION
      • 2. PREPARATION OF ANTIOXIDANT PEPTIDES
        • 2.1. Preparation of antioxidant peptides by traditional hydrolysis
        • 2.2. Bioinformatics guides the preparation of antioxidant peptides by enzymatic hydrolysis
      • 3. MECHANISM OF ANTIOXIDANT PEPTIDES INHIBITING OIL OXIDATION
        • 3.1. Scavenging free radicals
        • 3.2. Inhibiting the activity of catalytic metal ions
        • 3.3. Restraining the formation and reactivity of hydroperoxide
      • 4. APPLICATION OF ANTIOXIDANT PEPTODES IN THE OIL INDUSTRY
      • 5. CONCLUSION AND FUTURE PROSPECTS
      • ACKNOWLEDGMENTS
      • REFERENCES
  • e479.pdf
    • Can rice bran, sesame, and olive oils be used as substitutes for soybean oil to improve French salad
      • 1. INTRODUCTION
      • 2. MATERIALS AND METHODS
        • 2.1. Preparation of French salad dressing
          • 2.1.1. Edible oils’ chemical analyses
        • 2.2. Physicochemical properties
        • 2.3. Color measurement
        • 2.4. Rheological properties
        • 2.5. Sensory evaluation
        • 2.6. Statistical analysis
      • 3. RESULTS AND DISCUSSION
        • 3.1. Fatty acid composition and chemical characteristics of selected oils
        • 3.2. Physicochemical properties
        • 3.3. Color measurement
        • 3.4. Rheological tests
        • 3.5. Sensory evaluation
      • 4. CONCLUSIONS
        • Compliance with ethical standards
      • REFERENCES
  • e480.pdf
    • Effect of different extraction methods on saffron antioxidant activity, total phenolic and crocin co
      • 1. INTRODUCTION
      • 2. MATERIALS AND METHODS
        • 2.1. Materials
        • 2.2. Preparation of saffron extract
          • 2.2.1. Maceration extraction (ME), ultrasound-assisted extraction (UAE) and microwave-assisted extra
          • 2.2.2. Combination of ultrasound-assisted extraction (UAE) with microwave-assisted extraction (MAE)
        • 2.3. Characterization of saffron extract
          • 2.3.1. Total phenolic content (TPC)
          • 2.3.2. ABTS radical scavenging activity
          • 2.3.3. Determination of the main characteristics of saffron using the UV-Vis spectrophotometric meth
        • 2.4. Preparation of freeze-dried saffron extract
        • 2.5. HPLC and LC-MS analysis of the freeze-dried saffron extract
        • 2.6. Characterization of oils
          • 2.6.1. Physiochemical characteristics
          • 2.6.2. Fatty acid profile of oils
          • 2.6.3. Oxidative stability index (OSI)
        • 2.7. Statistical analysis
      • 3. RESULTS AND DISCUSSION
        • 3.1. Effect of different extraction methods on tpc and antioxidant activity
        • 3.2. Effect of extraction methods on crocin, safranal and picrocrocin contents
        • 3.3. Identification of saffron extract compounds by HPLC and LC-MS analysis
        • 3.4. Fatty acid composition
        • 3.5. Oxidative stability index (OSI)
      • 4. CONCLUSIONS
      • ACKNOWLEDGMENTS
      • REFERENCES
  • e481.pdf
    • Cold-pressed milk thistle seed oil: physico-chemical properties, composition and sensory analysis
      • 1. INTRODUCTION
      • 2. MATERIALS AND METHODS
        • 2.1. Materials
        • 2.2. Analyses of the milk thistle seeds
        • 2.3. Cold pressing of the milk thistle seeds
        • 2.4. Physico-chemical analyses of the oil
        • 2.5. Thermal analyses of the oil
        • 2.6. Determination of the fatty acid, sterol, and tocopherol compositions of the oil
        • 2.7. Sensory descriptive analysis of the oil
        • 2.8. Consumer test
        • 2.9. Statistical analysis
      • 3. RESULTS AND DISCUSSION
        • 3.1. Physico-chemical properties of the seeds
        • 3.2. Physico-chemical properties of the oil
        • 3.3. Thermal properties of the oil
        • 3.4. Fatty acid, sterol, and tocopherol compositions of the oil
        • 3.5. Sensory properties and consumer preferences of the oil
      • 4. CONCLUSIONS
      • ACKNOWLEDGMENTS
      • CONFLICTS OF INTEREST
      • REFERENCES
  • e482.pdf
    • From seeds to bioenergy: a conversion path for the valorization of castor and jatropha seeds
      • 1. INTRODUCTION
      • 2. MATERIALS AND METHODS
        • 2.1. Moisture content
        • 2.2. Mechanical oil extraction and filtration
        • 2.3. Castor and jatropha oil transesterification
        • 2.4. Oil and biodiesel acid value
        • 2.5. Cloud and pour point of oils and biodiesel
        • 2.6. Dynamic viscosity
        • 2.7. Gas chromatography
        • 2.8. Estimation of higher heating values for castor and jatropha biodiesel
      • 3. RESULTS AND DISCUSSIONS
        • 3.1. Moisture content
        • 3.2. Mechanical extraction of oils
        • 3.3. Transesterification of castor and jatropha oil
        • 3.4. Acid value, cloud point and pour point of oils and biodiesel
        • 3.5. Dynamic viscosity of oils and biodiesel
        • 3.6. Gas chromatography
        • 3.7. Higher heating value of castor and jatropha biodiesel estimation
      • 4. CONCLUSIONS
      • ACKNOWLEDGMENTS
      • REFERENCES
  • e483.pdf
    • Obtaining hydrolysate from macauba oil and its application in the production of methyl esters
      • 1. INTRODUCTION
      • 2. MATERIALS AND METHODS
        • 2.1. Materials
        • 2.2. Experimental procedure
        • 2.3. Analytical method
        • 2.4. Reuse of lipase
      • 3. RESULTS
        • 3.1. Enzymatic hydrolysis of macauba oil
          • 3.1.1. Effect of process variables
          • 3.1.2. Maximization of FFA yield
          • 3.1.3. Effect of reaction time
          • 3.1.4. Characterization of hydrolyzate
          • 3.1.5. Reuse of biocatalyst
        • 3.2. Reaction carried out with macauba oil hydrolyzate
          • 3.2.1. Reuse of biocatalyst
      • 4. CONCLUSIONS
      • ACKNOWLEDGMENTS
      • REFERENCES
  • e484.pdf
    • Effect of vacuum impregnation on physical changes during table olive processing
      • 1. INTRODUCTION
      • 2. MATERIALS AND METHODS
        • 2.1. Olive material
        • 2.2. Assays of VI
        • 2.3. Spanish-style green olive processing
        • 2.4. Black ripe olive processing
        • 2.5. Weight variation analysis
        • 2.6. Firmness analysis
        • 2.7. Chemical analysis
        • 2.8. Statistical analyses
      • 3. RESULTS AND DISCUSSION
        • 3.1. Effect of vacuum degree and olive size on weight changes
        • 3.2. Black ripe olives
        • 3.3. Spanish-style green olives
      • 4. CONCLUSIONS
      • ACKNOWLEDGMENTS
      • DATA AVAILABILITY
      • REFERENCES

Sujets

    SUBSCRIBE TO OUR NEWSLETTER

    By subscribing, you accept our Privacy Policy